FB 42515

Alberta - British Columbia Boundary Commission

Survey Report
Yellowhead Pass Boundary Monument Project
Survey of Restoration of Survey Monuments S, 1S to 31S (Inclusively), and 33S Along a Portion of the
Alberta - British Columbia Boundary

Project No: 180108 - Alberta / 180109 - B.C. \& Canada SGB Project No.: 201806041

Valard Geomatics Ltd.
Suite 201, 1253-91 ${ }^{\text {st }}$ Street
Edmonton, AB, T6X 1E9
November 14th, 2018

Certified Correct this 14th day of November, 2018

Certified Correct this 14th day of November, 2018

Tracey Peet, B.C.L.S., E.I.T.

Table of Contents

1.0 Introduction 3
2.0 Logistics 3
3.0 Survey Methodology 4
4.0 Monuments 5
4.1 S 5
4.2 1S 7
4.32 S 9
4.4 3S 11
4.54 S 13
4.6 5S 15
4.7 6S 17
4.8 7S 19
4.98 S 21
4.10 9S 23
4.11 10S 25
4.12 11S 27
4.13 12S 29
4.14 13S 31
4.15 14S 33
4.16 15S 35
4.17 16S 37
4.18 17S 39
4.19 18S 41
4.2019 S 43
4.21 20S 45
4.2221 S 47
4.2322 S 49
4.2423 S 51
4.25 24S 53
4.26 25S 55
4.27 26S 57
4.28 27S 59
4.2928 S 61
4.3029 S 63
4.31 30S 65
4.32 31S 67
4.3333 S 69
Conclusion 69
Appendix I-Table of Coordinates. 70

1.0 Introduction

Valard Geomatics Ltd. was contracted by Alberta Environment and Parks and British Columbia (BC) Land Title and Survey Authority (LTSA) to restore and survey 33 interprovincial monuments along the BC-Alberta border on behalf of the Alberta-British Columbia Boundary Commission. The area that is encompassed by these monuments is known as Yellowhead Pass and falls in between Mount Robson Provincial Park (BC) and Jasper National Park (Alberta); therefore, lies between areas under both provincial and federal jurisdiction.

The goal of this project was to restore the physical monuments in such a way to minimize further deterioration and assign accurate georeferenced coordinates to all points. The work was to be carried out in such a way to minimize all environmental impacts and ensure all deteriorated remnants of the monuments were properly disposed of. This work took place between August $12^{\text {th }}$ and $27^{\text {th }}, 2018$, with August $12^{\text {th }}$ and $27^{\text {th }}$ being travel days for the field crews and August $24^{\text {th }}$ being a standby day due to forest fires in the area requiring all helicopters.

2.0 Logistics

The unique nature of this project required in-depth planning for the project requirements. Prior to initializing work, a project start-up meeting was held with Parks Canada. A BC Parks representative was unable to make the meeting; however, they were in agreement with Parks Canada's rules and requirements. During this start-up meeting, many environmental concerns were addressed, including the "no-cutting" rule. Parks Canada gave the go-ahead to hand cut trees and shrubs within a few metres of each monument in order to make the border more visible for the general public. The survey crews were careful to follow this rule and cutting was absolutely required to provide a clear sky view at most of the locations.

Although Caltech Surveys' recommendations were to hike in to most of the monuments, helicopter access was required due to the amount of materials required to be brought in to restore the monuments and subsequently survey them. Yellowhead Helicopters Ltd., based out of Valemount, were subcontracted to complete this work. This introduced another challenge as this work was to be completed at the height of BC's forest fire season, meaning helicopters and pilots had limited availability.

On the south side of the railway, odd-numbered monuments $15 S$ through 33 inclusive were visited via helicopter, while odd-numbered monuments $1 S$ through 11 S inclusive were visited via foot. North of the railway, even-numbered monuments 8 S through 30 S inclusive were flown to, while S to 6 S were visited by hiking from the utility corridor with permission from Kinder Morgan.

Another unique requirement of this project was that all demolished remnants of the old monuments were to be properly disposed of and not left at the monument location. Upon taking apart the

[^0]monuments, the old concrete was discovered to have many pieces of native rock mixed in which easily broke apart from the old concrete mix. The native rocks were left around each monument. The concrete and any large pieces of monuments that were unable to be broken apart were packed in reusable plastic bins and recycled burlap sacks to be retrieved at the end of the project. This resulted in over 3550 kg of concrete hauled out of the area via two full days of heli-slinging, using the Rockingham Gravel Pit for a staging area, as arranged by BC Parks. From the gravel pit, the concrete waste was sent to the West Yellowhead Landfill via dump trailer.

3.0 Survey Methodology

The requirements for this project were to georeference each monument to an absolute accuracy of $+/-$ 0.20 m . In order to achieve this, two bases were set-up everyday to continuously collect and broadcast data in Valemount, about 50km from the project area. In addition, the CANNET station in Jasper was utilized in order to obtain a network adjustment. By collecting static data at each of the monuments, Trimble recommends a minimum occupation time of five minutes plus one minute per kilometre away from the base station to achieve a relative baseline accuracy of $+/-0.03 \mathrm{~m}$. This methodology was followed even though the required accuracy was much more relaxed. The tree cover, coupled with the varying terrain, resulted in the survey crew setting up longer occupation times of at least one hour.

The monuments around the highway, railway, and utility corridor were close enough to each other for the survey crew to set-up another base along the highway in an open area. These monuments were all measured using Real-Time Kinematic (RTK) GNSS methods instead of static observations. Any monuments located in dense tree areas that required total station observations meant that control points were set in nearby open areas and a short traverse double-run into the monument location.

All base stations were processed using Natural Resources Canada's (NRCAN) Precise Point Positioning (PPP) service with the baselines between each processed to tighten the network. As the data from each monument observation came in, this was added to the baseline network to process everything relative to one another. In addition, all static GNSS data from the monument observations were processed using PPP to provide a redundant check on the baseline processing. All results of this processing can be found in Appendix 1.

4.0 Monuments

4.1 S

Found
There was no evidence of Monument S on the ground due to ongoing maintenance of the utility right-of-way. There is a distinct cutline heading northwest to Monument 2 S and southeast to monument 1S.

Set

Prior to positioning or setting any monumentation, both BC One Call and Alberta One Call were contacted in order to have all underground utilities located in the vicinity. Once markers were placed on the surface, we worked with the locators to determine the best location for the new monument. This was decided to be along the south edge of the clearing for the utility corridor, approximately 7.5 m south of the Kinder Morgan pipeline. This location likely results in the least amount of impact to the existing infrastructure and the best chance for monument survival. Parks Canada, BC Parks and Kinder Morgan staff were onsite for the setting of this monument. The lack of tree cover along the utility right-of-way provided ample sky view for RTK to enable the stake-out and subsequent measurement of the new S monument.

A ground-level, cylindrical, standard concrete post was set online between found monuments 1 S and $2 \mathrm{~S}, 7.5 \mathrm{~m}$ southeast of where the original S monument was located. A capped post with rebar was used to keep the monument centered in the new concrete, which was 0.3 m in diameter. A reference post was placed 0.6 m northwest of the monument to protect the monument and make it visible.

[^1]Found
Monument 1S was found in poor condition with both the monolith and base deteriorating. The pillar cap and datum point was missing as well. Upon further inspection, all concrete easily broke off in large pieces and the removal of the monolith caused further deterioration and peeling of the concrete base. There is a distinct cutline northwest to monuments S and 2 S and a hint of a cutline to 3 S .

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was set in the centre using a construction adhesive. A reference post was placed 1.3 m northeast. 1S was surveyed in using GNSS RTK methods, with a base station set-up nearby on the highway. Although the photograph does not clearly show it, the cap has 'Alberta' and 'British Columbia' stamped on the correct sides.

YValard
 VALARD
 GEOMATICS LTD.

15		MENT RESIORAT	
SHor monevith			
ALSo MEASTRLD			
For A	SE	人ay Creck (see	
- ${ }^{\text {N Pack }}$	5)	Rmovel mo	
BASE.	PLACL	CAPEP Rock Post	
RTK Posir	ITION.	CHECKED To R	
Photos	Aria	$D w /$ TODAY'S D	
$10015(-1)$	148	PL CAP Rock Past	
		RP 1.3 a $N E$	

Found
Monument 2S was found in poor condition with both the monolith and base deteriorating. The top of the pillar was missing but the datum point was still in place. Upon further inspection, all concrete easily broke off due to large cracks in the base and the removal of the monolith caused further deterioration of the concrete base. There was a faint cutline visible to the southeast towards S , but no visible cutline to 4 S .

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was set using a construction adhesive. A reference post was placed 0.5 m north of the monument. Monument 2 S was surveyed using a combination of RTK and static GNSS.

Valard

Base e	P,	SRS 3 H.I.	1.949 m
START CHECT	cee Pit	SRS 4	2.000 m
		$\triangle H 2 \mathrm{~mm} \Delta V-6 \mathrm{~mm}$	
		*OMIT	
1025	157	LSemonomith tit	0.045m
- Omit TH	15 Poin	DuE to POOR GTPS PO	TiON,
Found A	MONOL	H 25 IN Paoh Co	Dition
PILCAR TP	P in	AET. MEASURED	SPMEE.
OFF OF	TIP.	REMOVED PILLAR A	(N)
BasE.	P_{L} c	APPEI) Rock Posi	off
$\begin{aligned} & \text { OF REF } \\ & \text { ATTACHA } \end{aligned}$	ERENC.	= spikes. Photos	
) will	-H TODAY'S DAT	4
$10025(-1,-2)$	150	2S. PL CAP Rock PoxT	4.2 .4 (4.4
		RP 0.50 m NJRTH	

[^2]
Found

Monument 3S was found in excellent condition, with both the monolith and base still in place and no deterioration found. Minor cracks were observed in the base and one corner of the monolith was split open from the datum point to the base. There were no visible cutlines in either direction.

Set

The tin surrounding the monolith was pushed back in place and held with construction adhesive. The cracks in the concrete base were sealed and the entire base was coated with a waterproof sealant. Monument 3S was surveyed using GNSS RTK methods with a base station set-up on the highway.

VValard
 VALARD
 GEOMATICS LTD.

Found

Monument 4S was found in poor condition with the monolith completely off the base, possibly knocked off by a downed tree. Upon further inspection, the concrete base easily broke apart due to damage from surrounding trees, weather, and moss. There were no visible cutlines to either 2 S or 6 S .

Set

Reference spikes were placed around the concrete base in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was set using a construction adhesive. A reference post was placed 1.6 m west. Monument 4 S was surveyed using GNSS RTK methods.

EValard
 VALARD
 GEOMATICS LTD.

[^3]
Found

Monument 5S was found in fair condition with the monolith severely deteriorating and no datum point visible. The base had deeper cracks but the majority of it was still intact. There were prominent cutlines towards 7 S and 3S. There was a number recorded below the tin plates on the monolith ('903-170814').

Set

Monument 5S was surveyed using GNSS RTK methods from a base station set-up nearby on the highway. The monolith was carefully removed and the base was repaired by sealing the cracks and filling in where the pillar was removed. A standard rock post was set in the new concrete using the previous RTK measurement and measuring between the four corners for restoration. The entire base was sealed to mitigate erosion. A reference post was placed 1.5 m northwest of the monument.

Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB TBX 1E9 | Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

Found
Monument 6S was found in poor condition with the monolith completely off the base and the base severely deteriorating. Upon clearing the vegetation and moss from the base, all the concrete of the base easily fell apart and restoring it was not an option. There were no visible cutlines in either direction.

Set

The centre of the base was measured using the four corners of the base, rather than reference spikes. The entire monument was then demolished to ground level and a standard rock post was set using a construction adhesive. A reference post was placed 1.1 m east. Monument 6 S was surveyed using GNSS RTK methods.

Baske Pt		SRS3 H.I.	1.890 m
Start Ched	Cu $P_{5}+{ }^{+}$	SRS4	2.0
		$\triangle H 2 m m \Delta V 1$ Im	
$1065(-1)$	157	6S FD CONCRCIE	
		BASE - CTR (INIER	
		OF CORNERS)	
to concrer	cie B	5 of 6s. Plular	was
LAHING ON	THE	GROUND. MEA	CTR
Of BASE	BY I	RRSccion of	
$\begin{array}{\|c\|} \hline \text { SHO } w \\ \hline \text { BASE. } \\ \hline \end{array}$	RK	1065(-1)). Rem	
	Pl car	PESN Roc< POST To	1065
$10065(-1)$	148	Pl Cap Rocu Post	On. 2.3 m
		RP I.Im EAST	

Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9| Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

4.87 S

Found

Monument 7S was found in poor condition with both the monolith and base deteriorating. The top of the pillar was completely missing but the datum point was still in place within the weathered concrete. Upon further inspection, the "minor cracks" in the concrete easily broke apart and the removal of the monolith caused further breaking of the concrete base. There was a prominent cutline towards 5 S , but no visible cutline to 9 S .

Set

Monument 7S was georeferenced by taking a GNSS RTK measurement on the datum point in order to restore the centre of the monument upon demolition. Therefore, no reference spikes were used. The entire monument was then demolished to ground level and a standard rock post was set using a construction adhesive. A reference post was placed south of the monument.

Note: the description of restoration to monument 7 S mentions 5 S rather than 7 S . This is a blunder in the field notes and should read 7S.

Found

Monument 8 S was found in fair condition with both the monolith and base deteriorating. The top of the pillar and the datum point were still in place but the tin on the monolith was peeling. This caused weather damage to the concrete inside. Upon further inspection of the minor cracks reported on the base, all of the concrete easily broke apart and the removal of the monolith caused further deterioration of the concrete base. There was a prominent cutline towards 5 S , but no visible cutline to 9 S .

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was set using a construction adhesive. A reference post was placed north of the monument. Two control points were established in a nearby clearing via GNSS RTK methods, as shown in the field notes sketch. Monument 8S was surveyed by traversing from control points set in a nearby clearing.

Found

Monument 9S was found in poor condition with both the monolith and base severely deteriorating. The peeling tin on the monolith has introduced water damage within the concrete which required the entire structure to be removed. The removal of the monolith caused further deterioration of the concrete base and the small cracks in the base quickly gave way to large pieces of concrete breaking off, as shown in the photographs. There were no visible cutlines in either direction.

Set

Monument 9S was georeferenced by GNSS RTK ties to the datum point in order to restore the centre of the monument upon demolition. Therefore, reference spikes were not required to restore this monument. The entire monument was then demolished to ground level and a standard rock post was set using a construction adhesive. A reference post was placed 1.5 m south.

95			
Foond as	Howunent	BASE + Mawount DEEERIO	ATING,
SHOT TOP.	Retlove	BtSE + MoNolnt. RESET	Rock
CAP POST	+ M12er	er port $/ \mathrm{s}$ 1.50-S	port
JA1004	95	TOP OF OLD MONOUTH	2.30 .
J4100441	95	CHK	2.47.
JAlous	95	RESET ROCK CAP PAST	2.47
J41005C1	95	CHK	2.47

Found

Monument 10S was found in excellent condition with both the monolith and base still in place and no deterioration found. There were minor cracks in the concrete base but nothing affecting the structural integrity. There was no visible cutline to 8 S ; however, there was a slight cutline visible uphill to 12 S .

Set

The cracks in the concrete base were sealed and the entire base was coated with a waterproof sealant. Monument 10S was surveyed using static GNSS observations and a marker post was set nearby.

4.12 11S

Found

Monument 11S was found in poor condition with both the monolith and base severely deteriorating. The pillar top was missing but the datum point remained in place. The monolith was not salvagable and the subsequent removal caused further deterioration of the concrete base. The base was not salvagable due to the amount of vegetation growing in the cracks. There were no visible cutlines in either direction.

Set

The tree that had fallen across the base was easily removed. Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard capped post was drilled in the existing concrete. A reference post was placed 1.2 m north. Monument 11S was surveyed using static GNSS methods.

115			
Found old	Monut	T, BASE - MONOLTH	tevectom
Set 3 Re	Freake	SPMES, Sertow SKE $1+1$	volut
RESET CA	Post	in deme tole, MP \% 1 1.p	On Nast
JA. 1006	If		$2.90-$
TA1006 61	115		3.20 -

Found

Monument 12S was found in fair condition with both the monolith and base deteriorating. The pillar top was partially missing but the datum point remained in place. Peeling tin on the monolith has caused heavy weathering of the concrete inside. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There was no visible cutline to 10S; however, a prominent cutline towards 14 S was observed.

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.7 m southwest. Monument 12 S was surveyed using static GNSS observations.

(1) Ma ard $\begin{aligned} & \text { VALARD } \\ & \text { GEOMATICS LTD. }\end{aligned}$

Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9 | Tel: 780.469.0306| Fax: 780.469.2143 | www.valardgeomatics.com

Found

Monument 13S was found in poor condition with both the monolith and base deteriorating. The pillar top was partially missing but the datum point remained in place. Upon further inspection of the minor cracks in the base, all concrete easily broke off in large pieces and the removal of the monolith caused further deterioration of the concrete base. There was a visible cutline to 15 S ; however, no visible cutline towards 11 S was observed.

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard capped post was drilled in the existing concrete. A reference post was placed 0.7 m north. Monument 3 S was surveyed using a long GNSS static occupation due to the surrounding tree cover.

VValard
 VALARD
 GEOMATICS LTD.

Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9| Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

Found

Monument 14S was found in poor condition with both the monolith and base heavily deteriorating. The majority of the tin on the monolith was peeling away, revealing heavily weathered concrete inside. The pillar top was partially missing but the datum point remained in place. Upon further inspection, all concrete easily broke off in large pieces and the removal of the monolith caused further deterioration of the severely cracked concrete base. There are prominent cutlines to both 16 S and 12S.

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard capped post was drilled in the existing concrete. A reference post was placed 1.6 m northeast. Monument 14 S was surveyed using static GNSS methods.

Found
Monument 15S was found in poor condition with the monolith completely sheared off by a nearby dead tree. The base was severely deteriorating but the centre of the base was able to be restored by using the four corners of the base once the vegetation was cleared away. The large cracks in the concrete base prevented it from being restored. There were no visible cutlines in either direction.

Set

Reference spikes were placed around the base in order to restore the centre of the monument upon demolition. The entire base was then demolished to ground level and a standard capped post was drilled in the existing concrete and set using construction adhesive to hold it in place. A reference post was placed 0.6 m north. Monument 15 S was surveyed using GNSS static observations.

\section*{(1) Valaro	VALARD
GEOMATICS LTD.	}

[^4]
4.17 16S

Found

Monument 16S was found in poor condition with both the monolith and base deteriorating. The pillar top was off centre but the datum point remained in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There were prominent cutlines to both monuments 14 S and 18 S .

Set

Monument 16 S was surveyed using static GNSS observations. Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.95 m north.

EValard
 VALARD
 GEOMATICS LTD.

4.18 17S

Found

Monument 17S was found in poor condition with both the monolith and base deteriorating. The pillar top was partially missing but the datum point remained in place. Upon removal of the monolith, all concrete easily broke off in large pieces. There were prominent cutlines to both monuments 15 S and 19 S .

Set
The $10-20 \mathrm{~cm}$ diameter pine trees surrounding the monument were cut to allow for a static occupation and ensure visibility of the border. Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed nearby. Monument 17S was surveyed using a static GNSS observation.

Found
Monument 18 S was found in poor condition with both the monolith and base deteriorating. The pillar top was splitting apart but the datum point remained in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There were prominent cutlines to both monuments 16 S and 20 S .

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 1.5 m east. Monument 18 S was surveyed using static GNSS observations.

4.20 19S

Found

Monument 19S was found in poor condition with both the monolith and base deteriorating. The pillar top and datum point were missing. Upon further inspection, most concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There was a clear cutline to 17 S but nothing visible downhill to 21 S .

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. Most of the concrete base was demolished until solid concrete was reached. The remaining concrete was patched and sealed and a standard capped post was drilled in the existing concrete and set using construction adhesive. A reference post was placed nearby. Monument 19S was georeferenced using static GNSS observations.

195			
FCOND OLD	Tavorle	π, MONOUTH DEIER PRATINL	
REPAMPED CCNPPETE PASE, DE-ESTR LISTED CENTLE			
Wryt Pent	M M	Nouth Footpant.	
SET CAS	Post	in deill hole	
LOLAED St	$k e$	195 CAP Post ins Teral toly	LE
STAET TINE.	08:38	HT: 1.190 m	
ENS TIME	$10: 22$		

Found

Monument 20S was found in poor condition with both the monolith and base deteriorating. The pillar top was missing but the datum point remained in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There were faint cutlines to both monuments 18 S and 22 S .

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.55 m south. Monument 20S was surveyed using static GNSS observations.

VValard

20 S	Mon	ment Restoration	
Found		PA	
Condit	on. M	A SURED 3 SPILES O	of
Monor	+ As	Per sklteh on page	+6.
Remove	MoNo	ITH IND BASE.	SET
Cap Roc.	Post	OFF OF THE REFER	Ence
SPIKES.	Photos	A TACHEID W/Totay	
DATA.			

4.22 21S

Found

Monument 21S was found in poor condition with both the monolith and base severely deteriorating. The pillar top and datum point were off centre. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There were no visible cutlines in either direction.

Set

Monument 21S was surveyed via static GNSS. Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.7 m northeast of the monument.

Found

Monument 22S was found in poor condition with both the monolith and base severely deteriorating. The pillar top was partially missing but the datum point remains in place. Upon further inspection, all concrete easily crumbled and the removal of the monolith caused further deterioration of the concrete base. There was a visible cutline leading to 24 S but nothing prominent to 20S.

Set

Monument 22S was surveyed using static GNSS observations. Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.55 m north.

YValard
 VALARD
 GEOMATICS LTD.

225	Mower	Ent Restorations	
Foa		ITH W/BASE IN	Poor
F-A, R can	Tton	- MEASURED 3 SPR	<es
OFF of	Monol	TH AS PCR SKETCH	ON
Pack 3.	Remova	\triangle MONOLITH AND	Basc.
SET CAP	P Rocul	POST OFF OF TA	c
REFER	Rence	SPINES. PHotos	
ATTA	ED	/Today's pat	TA.

Found

Monument 23S was found in poor condition with both the monolith and base deteriorating. The pillar top was missing but the datum point was still in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There were no visible cutlines in either direction.

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.75 m west. Monument 23 s was surveyed using static GNSS methods.

235	MoNum	ENT RCSTORATIO	1
Found	MONOC	ITH IN POOR CONDIT	710 N
SET 3	SPMKE	\&S OFF OF CTR O\|	F
Monol	1TH.	BRONE APART Mon	NOLTH
$A N D$	CCMOV	4D. SET BPASS d.	AP
OFF of	THE	SPIKES. SEE SKE	ETCH
ON PAGE	3 An	D ATTACHED PHO	bTos
WITH	ODAY',	S DATA.	

4.25 24S

Found

Monument 24 S was found in poor condition with both the monolith and base severely deteriorating. The pillar top was partially missing but the datum point was still in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There was a prominent cutline to 26 S but nothing visible to 22 S .

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed nearby. Monument 24 S was surveyed using static GNSS observations.

$4.2625 S$

Found

Monument 25S was found in poor condition with both the monolith and base severely deteriorating. The pillar top was missing but the datum point was still in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There are no visible cutlines in either direction.

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed nearby. Monument 25 S was surveyed using static GNSS methods.

255			
Faond old	Mowntat	MONaIn - BASE DETEPic	trut
RE-ESABUSH	cer	E writ remanning	celat
SET Thre:	REECR	, XE SPIKES, REFER TO	Scery
SET ROCK	ctp Po	St in drill hole	
LOGGED S	Tk (2)	255 Rock at Pust	
START TMME.	13:22	$+\pi=1.530$ n	
END TIME:	$14: 32$		

4.27 26S

Found
Monument 26S was found in fair condition with both the monolith and base deteriorating. The pillar top was off centre but the datum point was still in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base due to large cracks already in place. There were visible cutlines in either direction.

Set

Monument 26S was surveyed using static GNSS observations. Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed nearby.

$4.2827 S$

Found

Monument 27S was found in poor condition with both the monolith and base severely deteriorating. The pillar top was partially missing and the datum point was off centre. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There was a faint cutline to 25 S but nothing visible to 29 S.

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed nearby. Monument 27 S was surveyed using static GNSS methods.

275			
FOUND OLD	MONUMEN	Howalith \& BASE DETPIMRA	-1, 6.
RE-ETAELSH	CEN.	Tre wrth remantiva mo	Narat
SET THREE	REFES	ONE SPRES REEER D	Swerd.
SeT Rock	SAP	POST IN DRIU HOLE	
LOCGED	SATKC	275 ROCK CAP POST	
STARE TIME:	10:28	㑝: 1.665_{m}	
END TIME:	$11: 35$		

Found
Monument 28S was found in fair condition with both the monolith and base deteriorating. The tin of the monolith had peeled back, revealing heavily weathered concrete. The pillar top and datum point were still in place, although cracking apart significantly. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the heavily cracked concrete base. There is a visible cutline back towards 30 S but nothing noticeable to 26 S .

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.7 m south. Monument 28 S was surveyed using static GNSS observations.

(1) Marar $\begin{array}{ll}\text { VALARD } \\ \text { GEOMATICS LTD. }\end{array}$

285	Monan	ENT RESTORATION	
Found	MONO-	ITH W/BASE IN P	Poor /
$F_{A, R} C_{0}$	ONDITI	ON (BEaINNING To	
CRUMBL	¢ $A P_{A}$	RT). SET SPIKES Of	\& of
Monocil	H AS	PER SKETCH ON Pa	7.
REMOVED	Mono	ITA AND BASE. $\$$	SET
BRASS 9	AP w/	4"STEM IN ROCK ush	
THE R	REFEREN	¢f SPIKES. Photas	
ATTACk	HED w/	TODAY'S DATA.	

Found

Monument 29S was found in poor condition with both the monolith and base deteriorating and the entire structure off-level due to nearby roots. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There are no visible cutlines in either direction.

Set

Reference spikes were placed around where the concrete base would have been level on the ground in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard rock post was drilled in the existing concrete and set using construction adhesive. A reference post was placed 0.6 m west. Monument 29S was surveyed using static GNSS methods.

4.31 30S

Found

Monument 30S was found in poor condition with both the monolith and base deteriorating. The pillar top was missing but the datum point was still in place. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There is a hint of a cutline to 28 S and a clear line of sight to the assumed position of 32S.

Set

Reference spikes were placed around the datum point in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard capped post was drilled in the existing concrete. A reference post was placed 0.8 m southwest. Control was set in the nearby field in case the static GNSS observation did not process to within the allowable tolerances; however, upon post-processing, a long static GNSS observation on 30S resulted in acceptable tolerances as per the project specifications.

\section*{(1) Valaro	VALARD
GEOMATICS LTD.	}

[^5]
Found

Monument 31S was found in poor condition with both the monolith and base deteriorating. The entire monument was crumbling and the original centre was difficult to locate. Upon further inspection, all concrete easily broke off and the removal of the monolith caused further deterioration of the concrete base. There is a visible cutline to the hill where 33 S stands on but nothing visible to 29 S .

Set

Reference spikes were placed around the four corners of the concrete base in order to restore the centre of the monument upon demolition. The entire monument was then demolished to ground level and a standard capped post was drilled in the existing concrete. A reference post was placed nearby. Monument 31S was surveyed using static GNSS methods.

Found

The rock cairn on top of 33 s was prominent, although slightly toppled over. Once the rock cairn was carefully disembled, the brass bolt in concrete was obvious and it was in excellent condition. There was a visible cutline to 31S and a clear line of sight to the top of Miette Hill.

Set

The existing brass bolt was measured using static GNSS. A reference post was placed nearby and the rock cairn was rebuilt once the static occupation was complete.

335			
Found	OL	STONE CAIRN. REMONED	Rocks
4 Fourd	OLD Ee	ASS ROLT MARKED"	No 335,
Bemst colur	A (Soun)) A ALEERTA (NORTH).	
LOCGED	STATC	e 335 OLD geass boit	
SAAET 7	ME: 12:	47	
STOP TI	ME: 15	17	
HT: 1.4	710		

Conclusion

The original monuments in Yellowhead Pass were established in 1917. 101 years later, the majority of the monuments were found and restored to minimize further weathering. Most of these monuments were found with severe cracks and deterioration. With the amount of weakening in the concrete, the only option was to break apart the concrete to ground level and shape it to shed water. A large portion of the interprovincial boundary was measured with static GNSS observations apart from one point which required a conventional tie and a number north and south of the highway which were within RTK range of a base setup along the highway. All monuments were measured in to the required accuracy and the results can be found in Appendix I.

Appendix I - Table of Coordinates

report name: Yellowhead Pass Monuments
CLIENT:
BC LTSA \& AEP
JOB NUMBER: VG180108 \& VG180109

COORDINATE SYSTEM: UTM 11N, Geoid HT2
Horizontal Datum: NAD83CSRS Epoch 2002
Datum Point: Jasper Reference Station(Horz. \& Vert.) \& PPP coordinates for SRS1, SRS3, 8131000(Horz. Only)

Monument No.	Adjusted UTM Coordinates			Adjusted Global Coordinates			95\% Error Ellipse post adjustment (m)		RTK/Optical Precision (95\%)		Survey Date	Survey Type
	Northing(m)	Easting(m)	Orthometric Height(m)	Latitude(DMS)	Longitude(DMS)	Ellipsoid Height(m)	semi-major	semi-minor	H. Precision	V. Precision		
JASP	5858843.786	427713.76	1067.19	N5252'27.99710"	W118 $04^{\prime} 26.50320^{\prime \prime}$	1053.949	0.008	0.005				hold ref. station coordinates(3D)
SRS1	5859836.209	345303.363	786.788	N5251'57.53374"	W119 ${ }^{\circ} 17^{\prime} 53.39426^{\prime \prime}$	773.125	0.009	0.005			8/18/2018	Static (hold PPP, Horz. only)
SRS2	5862896.861	395724.095	1841.688	N5254'20.22350"	W118³3'01.69098"	1828.778	0.138	0.038			8/16/2018	Static (hold PPP, Horz. only)
SRS3	5860302.853	401815.3	1143.026	N5253'00.43237"	W118 ${ }^{\circ} 27^{\prime} 32.93957{ }^{\prime \prime}$	1130.047	0.011	0.007			8/19/2018	Static (hold PPP, Horz. only)
SRS4	5860284.851	401841.742	1142.96	N5252'59.86734"	W118²7'31.50583"	1129.982	No adjustment - RTK		0.015	0.016	8/19/2018	RTK
8131000	5862014.841	344513.249	799.223	N5253'07.16311"	W119 ${ }^{\circ} 18^{\prime} 39.35904{ }^{\prime \prime}$	785.597	0.009	0.005			8/14/2018	Static (hold PPP, Horz. only)
1 S	5861154.932	401517.088	1155.523	N5253'27.80258"	W118²7'49.81705"	1142.544	No adjustment - RTK		0.015	0.014	8/19/2018	RTK
2 S	5862038.142	400819.146	1336.699	N5253'55.91420"	W118²8'28.12031"	1323.731	No adjustment - RTK		0.043	0.053	8/20/2018	RTK
35	5860912.975	401702.417	1227.477	N5253'20.09684"	W118 ${ }^{\circ} 27^{\prime} 39.64037{ }^{\prime \prime}$	1214.497	No adjustment - RTK		0.028	0.034	8/19/2018	RTK
4S	5862362.05	400351.121	1415.107	N5254'06.08158"	W118 ${ }^{\circ} 28^{\prime} 53.51717{ }^{\prime \prime}$	1402.159	No adjustment - RTK		0.049	0.058	8/21/2018	RTK
5 S	5860680.485	402264.905	1217.418	N5253'12.94437"	W118 ${ }^{\circ} 27^{\prime} 09.30228{ }^{\prime \prime}$	1204.438	No adjustment - RTK		0.018	0.025	8/19/2018	RTK
6 S	5862462.167	399569.499	1467.223	N5254'08.79686"	W118 $29^{\prime} 35.44794{ }^{\prime \prime}$	1454.279	No adjustment - RTK		0.029	0.037	8/22/2018	RTK
75	5859997.42	402515.789	1208.443	N5252'51.00960"	W118 ${ }^{\circ} 6^{\prime} 55.14670{ }^{\prime \prime}$	1195.467	No adjustment - RTK		0.042	0.051	8/19/2018	RTK
85	5862878.386	399226.383	1452.167	N5254'22.03094"	W118²9'54.27069"	1439.233	No adjustment - RTK		0.005	0.008	8/18/2018	Total Station
9 S	5859503.654	402316.503	1332.17	N5252'34.90505"	W118 ${ }^{\circ} 27^{\prime} 05.27073 "$	1319.199	No adjustment - RTK		0.085	0.111	8/20/2018	RTK
10 S	5862900.306	398686.619	1497.171	N52 ${ }^{\circ} 54^{\prime} 22.37476{ }^{\prime \prime}$	W118 $30^{\prime} 23.17727^{\prime \prime}$	1484.235	0.013	0.011			8/18/2018	static
11 S	5859284.972	402166.46	1355.846	N5252'27.73206"	W118 ${ }^{\circ} 27^{\prime} 13.05741^{\prime \prime}$	1342.878	No adjustment - RTK		0.049	0.04	8/20/2018	RTK
12 S	5862758.418	398317.758	1606.428	N5254'17.53374"	W118 $30^{\prime} 42.75458{ }^{\prime \prime}$	1593.49	0.017	0.014			8/18/2018	static
13 S	5858829.752	401929.535	1590.713	N5252'12.84943"	W118 ${ }^{\circ} 27^{\prime} 25.23229^{\prime \prime}$	1577.753	0.014	0.012			8/15/2018	static
14 S	5862203.017	397764.82	1859.117	N5253'59.18830"	W118 ${ }^{\circ} 31{ }^{\prime} 11.71148^{\prime \prime}$	1846.173	0.018	0.014			8/17/2018	static
15S	5858648.944	401496.201	1620.56	N5252'06.71496"	W118 ${ }^{\circ} 27^{\prime} 48.20374$ "	1607.601	0.011	0.011			8/15/2018	static
16 S	5861865.467	397748.683	1892.79	N5253'48.25713"	W118 ${ }^{\circ} 31{ }^{\prime} 12.19259{ }^{\prime \prime}$	1879.841	0.012	0.011			8/17/2018	static
17S	5858105.759	401691.623	1708.782	N52 ${ }^{\circ} 51^{\prime} 49.27041{ }^{\prime \prime}$	W118²7'37.16564"	1695.847	0.014	0.012			8/15/2018	static
18 S	5861850.575	397605.233	1902.524	N5253'47.67709"	W118 ${ }^{\circ} 31{ }^{\prime} 19.84981{ }^{\prime \prime}$	1889.576	0.01	0.01			8/17/2018	static
19 S	5857824.516	402008.854	1757.398	N52 ${ }^{\circ} 51{ }^{\prime} 40.37981{ }^{\prime \prime}$	W118 ${ }^{\circ} 27^{\prime} 19.90276{ }^{\prime \prime}$	1744.473	0.009	0.008			8/15/2018	static
20S	5862199.384	397184.703	1877.806	N5253'58.67248"	W118 $31^{\prime} 42.74364{ }^{\prime \prime}$	1864.866	0.008	0.006			8/17/2018	static
215	5857227.892	402090.479	1915.571	N5251'21.13112'	W118 ${ }^{\circ} 27^{\prime} 14.89419$ "	1902.664	0.008	0.007			8/14/2018	static
22S	5862487.113	396817.571	1886.44	N5254'07.72753"	W118 ${ }^{\circ} 32^{\prime} 02.71397{ }^{\prime \prime}$	1873.51	0.009	0.009			8/17/2018	static
235	5856892.042	402568.818	1926.35	N5251'10.57792"	W118 ${ }^{\circ} 26^{\prime} 48.96650$ "	1913.459	0.008	0.007			8/14/2018	static
24 S	5862721.17	396443.103	1943.729	N5254'15.04020"	W118 $32^{\prime} 23.01749^{\prime \prime}$	1930.807	0.008	0.007			8/16/2018	static
25 S	5856545.946	403179.271	1891.646	N5250'59.77725"	W118 ${ }^{\circ} 26^{\prime} 15.97105^{\prime \prime}$	1878.774	0.011	0.008			8/14/2018	static
26 S	5863094.547	396255.312	1926.347	N5254'26.98885"	W118³2'33.49442"	1913.436	0.012	0.009			8/16/2018	static
275	5856654.031	403666.644	1935.153	N5251'03.58873"	W118 ${ }^{\circ} 25^{\prime} 50.04025^{\prime \prime}$	1922.281	0.012	0.01			8/14/2018	static
285	5863132.251	395779.565	1862.052	N5254'27.87723"	W118³2'58.99473"	1849.147	0.019	0.017			8/16/2018	static
295	5856814.524	404030.06	1967.975	N5251'09.01471"	W118 $25^{\circ} 30.78849^{\prime \prime}$	1955.101	0.006	0.005			8/13/2018	static
30S	5862918.02	395765.462	1843.735	N5254'20.93688"	W118 ${ }^{\circ} 32^{\prime} 59.50196{ }^{\prime \prime}$	1830.825	0.024	0.019			8/16/2018	static
31 S	5856554.724	404457.556	1976.423	N52 ${ }^{\circ} 51{ }^{\prime} 00.88311{ }^{\prime \prime}$	W118 ${ }^{\circ} 25^{\prime} 07.66706^{\prime \prime}$	1963.562	0.008	0.005			8/13/2018	static
335	5856782.571	405542.289	2086.759	N5251'08.94355"	W118 ${ }^{\circ} 24^{\prime} 09.93433^{\prime \prime}$	2073.9	0.006	0.005			8/13/2018	static
S Wt	5861239.867	401449.989	1137.785	N5253'30.50611"	W118²7'53.49889"	1124.807	No adjustment - RTK		0.016	0.019	8/21/2018	RTK
30S CONTROL	5862985.121	395695.93	1839.966	N5254'23.05906"	W118³3'03.29998"	1827.058	0.012	0.011			8/16/2018	static
JA10001	5862816.485	399170.601	1442.225	N5254'19.99070"	W118²9'57.18634"	1429.289	0.008	0.006			8/18/2018	static
JA10002	5862815.527	399057.654	1443.031	N5254'19.88336"	W118³0'03.22887"	1430.091	0.012	0.007			8/18/2018	static

[^0]: Valard Geomatics Ltd. I Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9| Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

[^1]: Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9 | Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

[^2]: Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9| Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

[^3]: Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9| Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

[^4]: Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB T6X 1E9| Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

[^5]: Valard Geomatics Ltd. | Suite 201, 1253-91 Street SW Edmonton, AB TBX 1E9 | Tel: 780.469.0306| Fax: 780.469.2143| www.valardgeomatics.com

